Introduction:

Sangola taluka comes under the Western part of the zone belongs to Solapur district, Maharashtra. Classifying as drought prone areas, shallow and poor type of soil, not retentive of moisture marks this part, along with the scanty and uncertain rainfall, due to scanty and non uniform rains scarcity condition prevail in the talukas. Generally monsoon period is from the second fortnight to June to the end of September bringing rains from South-West monsoon.

Even in the scarcity of water, we selected this region for the study of medicinal plants. Sangola taluka has number of rural areas which are very rich in flora and has geographical distribution. We visited different locality's in the month of June to September (2011), collected number of samples of leaves, stem, bark, wood, of angiospermic medicinal plants. All these collection was from some rural areas of said area.

In all things there is a poison and there is nothing without a poison. It depends on only upon the dose weather a poison is a poison or not. Medicinal plants have played an essential role in the development of human culture. Many of the modern medicines are produced indirectly from medicinal plants. Plants are directly used as medicines by a majority of cultures around the world. Many food crops have medicinal effects. Medicinal plants are resources of new drugs. Studying medicinal plants helps to understand plant toxicity and protect human and animal from natural poisons. Cultivation and preservation of medicinal plants protect biological diversity.

All medicinal plants have curative properties due to presence of various complex chemical substances of different compositions. Most of these compounds are synthesized in plants, as secondary metabolites. They are active ingredients and the main effective compounds in all medicinal plants. These active ingredients are chief constituents of the plants drugs, used in the form of ayurvedic and allopathic medicines. The plants drugs or herbal medicines offer conventional treatments, providing safe, well tolerated remedies for chronic illness. These medicines have the ability to affect the human body systems. These effects are dependent on the chemical constituents present in the plants.

In the present work an attempt is made to present some interesting ethno medicinal observations recorded in Sangola division, Solapur district, Maharashtra, India. While carrying out the field work, help was taken from the traditional healers in the plants of medicinal values and information, as they are familiar with the plants around them. The findings of this study can provide useful leads for pharmacological conformation of these reported uses which might in time become useful for mankind.

Sangola taluka is the region under investigation is very rich in biodiversity-constitute the districts Solapur. The study of medicinal plants was practically neglected from this region. Hence, it was felt to undertake the study.

Material and Method:

The study of medicinal plants generally survey, collection of data and observation like this process were used. The study is based on the data collected on common plants of medicinal values in Sangola taluka, district Solapur, Maharashtra, India. The survey was conducted in selected region and the study was carried out with elder people of both men and women, chief of villege, vaidyas, herbal knowledgeable, and headmans. The methodology was adapted as described by Chadwick, Marsh and S. K. Jain. Structured questionnaires, interviews, and partionaries observation were used to illustrate information from the resource person using the standard method. Also smpling...
method can be applied for detailed interviews were conducted with herbal specialist in the rural areas. At the time of study rural people shared his valuable information about the medicinal plants. All the data were collected in field on the basis of interviews with the traditional practitioners, men utilized of various medicinal plants in curing various ailments and were also taken more knowledgeable person for study of plants. Overall documentation the treatment pattern of various species were checked and confirmed. The specimens were collect and observe in their natural habitat and identified. Detail information was collected on the basis of health profile, social, economic and cultural aspects. Generally for the extraction of chemical constituent there are four methods are used. To extract chemical constituent from different organs and the tissue of medicinal plants these method are such as distillation, enfleurage & maceration, solvent extraction and expression.

Survey, collection of data and observation like this method are used to study of medicinal plants in rural area of sangola taluka. Out of the collection and survey made some of the specimens frequently occur that’s named Rauwolfia serpentine (L.) Benth. Ex. Kurz., Ipomoea fistulosa D. Austin, Bombax ceiba Linn., Acasia arabica (Lam.) Willd. and Jatropha curcas Linn. is observed. When survey of whole taluka is made there is found numbers of species of medicinal plants in different locality of the taluka which come under wild and local area of which only five species taken into consideration for the study. The name of the following species is Rauwolfia serpentine (L.) Benth. Ex. Kurz., Ipomoea fistulosa D. Austin, Bombax ceiba Linn., Acasia arabica (Lam.) Willd. and Jatropha curcas Linn. were recorded and brought such above plants parts like root, bark, wood, stem, leaves, flowers, fruit and seed and with help of prior analytical methods recorded chemical constituents and apply for curing a various ailment and diseases such methods are utilized for the study of medicinal plants.

Result and Discussion :

In this work five species has been taken into consideration for the study of medicinal plant which is vast use in concern with medicinal values to cure the various ailment and diseases. Name of some common plants like Rauwolfia serpentine (L.) Benth. Ex. Kurz., Ipomoea fistulosa D. Austin, Bombax ceiba Linn., Acasia arabica (Lam.) Willd. and Jatropha curcas Linn. All this common plants found in both rural and urban areas of Sangola taluka, the name of places particularly mention in the distribution of study area. All this medicinal plants discussed with respect to their english name, scientific name, vernacular name, source, family and distribution, chemical composition and uses.

(1) **Indian Snakeroot :**

Scientific Name : Rauwolfia serpentine (L.) Benth. Ex. Kurz.

Vernacular Name : Sarpagandha

Source : Root

Family & Distribution : It belongs to family Apocynaceae, the snake-weed genus includes about 50 species, this has fairly wide area of distribution, including the tropical part of the Himalayas, the Indian peninsula, Sri Lanka, Burma, and Indonesia. It is also found in local area of Mahud in Sangola.

Chemical Composition : Rauwolfia serpentine commonly known as Indian Snakeroot or Sarpagandha, contains a number of chemicals, including ajmaline, aricine, corynanthine, deserpidine lankescine rauwolscine.

Uses : The Indian snakeroot is a plant used to make medicine. The Indian snakeroot is used for mild high blood pressure, nervousness, trouble sleeping (insomnia), and mental disorders such as agitation psychosis and insanity. Indian snakeroot is also used for snake and reptile bites, fever, constipation, feverish intestinal diseases, liver ailments.

(2) **Bush Morning Glory, Pink Morning Glory :**

Scientific Name : Ipomoea fistulosa D. Austin

Vernacular Name : Mahanandi

Source : Leaves

Family & Distribution : Convolvulaceae, The plant is native of throughout much of tropical America, from Argentina to Mexico and it has naturalized widely in the old world tropics. It is also found everywhere in Sangola.

Chemical Composition : Main chemical constituent present in the fistulosa are dichloromethane, ethyl acetate, and methanol. It is also contain nitric acid, lipopolysaccharide 3,4 dimethoxy cinnamic acid.

Uses : The present study supports the use of Ipomoea leaves for treatment of inflammation, curing wounds, laxative, provoke menstruation, for treatment of skin diseases and as analgesic agent cannot be denied. It is also used in diabetis mellitus, arthritis, cancer, arsenic, opium poisoning under the developed female structure, piles, cardiac debility, sexual debility, dyspepsia, hepatoopathy, veneral debility, chronic brochial asthama, epilepsy, brain tonic, nervous weakness, cerebral weakness, sex disorders uropathy and tumor.

(3) **Silk Cotton tree, red cotton tree, kapok, bombax :**

Scientific Name : Bombax ceiba Linn.

Vernacular Name : Katsawar,

Source : Roots, Gum, Bark, Flowers, Seeds and leaves.

Family & Distribution : Bombacaceae, it is found in eastern-himalayan region, abundant in assam and west Bengal. It is mainly tropical trees. They are native to western Africa,
Southern and eastern Asia and northern Australia. In Sangola taluka it is found Narale, Wani Chinchale and Shivane.

Chemical Composition: Glycosides and tannins have been found in the root and stem of the silk cotton tree. The chemical constituents present in Bombax ceiba is taxareryl acetate, squalene, taraxerone, beta-sitosterol palmitate, taraxerol.

Uses: The roots are sweet, cooling, stimulant, restorative, astringent, alternative, aphrodisiac, demulcent, emetic and tonic. It is used in the treatment of diarrhoea, dysentery, menorrhagia, styptic and for wounds.

(4) **Acasia**:
Scientific Name: Acasia arabica (Lam.) Willd.
Vernacular Name: Babul
Source: Leaves, Seeds, Bark, Gum
Family & Distribution: Leguminosae, Acacia arabica is commonly found in dry forest areas. It is commonly found in India particularly in Punjab, Rajasthan and Southern states of India. It is also found in thoroughout every places of Sangola.

Chemical Composition: Acacia gum contains chiefly arabin which is the mixture of calcium, magnesium and potassium salts of arabinic acid. On hydrolysis arabic acid yields L-rhamnopyranose, galactopyranose, L-arabofuranose and the aldobionic acid 6–d-glucuronsidod-glactose. Further hydrolysis yields L-arabinose, D-galactose, d-glucuronic acid and rhamnose. The gum also possesses enzymes like oxidases, peroxidases and pectinases.

Uses: Used in the treatment of diarrhea of ordinary intensity. The gum used either in decoction or in syrup, is an effective medicine for diarrhea. Bark is useful in the treatment of eczema. Chewing of fresh bark of babul tree daily, helps strengthen loose teeth and arrest any bleeding from the gums. Leaves of are effective in the treatment of conjunctivitis. Leaves of babul are also beneficial in treating epiphora (Watering of the eyes). A decoction of the babul bark, mixed with rock salt, should be used as a gargle in treating tonsililitis.

(5) **Barbados nut, Purging nut, Physic nut**:
Scientific Name: Jatropha curcas Linn.
Vernacular Name: Mogli Arand
Source: Leaves, Seeds
Family & Distribution: Euphorbiaceae, it is still uncertain where the centre of origin is but it is believed to be Mexico and central America. It has been introduced to Africa and Asia and is now cultivated world wide. This highly drought resistant species is adapted to arid and semi arid conditions. It is also found in Mahud, Chick Mahud, Ekhatapur in Sangola regions.

Chemical Composition: Members of the genus Jatropha contain several toxic compounds. The seeds of Jatropha curcas contain the highly poisonous toxialbumin curcin, a lectin dimer. They also contain carinogenic phorbol. It contains nitrogen, phosphorus and potassium. A chemical exchange takes place between the alkoxy groups of an ester compound by an alcohol.

Uses: The leaves, seeds and oil of Dravanti is used to treat ulcer, tumour, scabies, wound, haemorrhoid, splenomegaly, skin diseases, rheumatism and paralysis. Paste of dravanti, applied on wounds to clean to promote quick healing. Seeds are severe purgative. The stems are used for basketmaking by the seri people in sonora, Mexico. The stems are roasted, split and soaked through an elaborate process. The reddish dye that is often used is made from the root of another plant species, Krameria grayii.

Acknowledgement:
Authors are thankful to knowledge providers for providing valuable information, who has guide to me and gives moral support to do this work. The authors also wish to state that prior informed consent was taken from the knowledge providers as per his guidelines.

References: